A solid spherical conducting shell has inner radius a and outer radius $2a$. At the center of the shell is located a point charge $+Q$. What must the excess charge of the shell be in order for the charge density on the inner and outer surfaces of the shell to be exactly equal ?
$-5Q$
$+3Q$
$-4Q$
$+4Q$
Explain electrostatics of conductors. Explain the effects produced inside a metallic conductor placed in an external electric field.
A solid uncharged conducting sphere has radius $3a$ contains a hollowed spherical region of radius $2a$. A point charge $+Q$ is placed at a position a distance a from the common center of the spheres. What is the magnitude of the electric field at the position $r = 4a$ from the center of the spheres as marked in the figure by $P?$ $\left( {k = \frac{1}{{4\pi { \in _0}}}} \right)$
Obtain an expression for electric field at the surface of a charged conductor.
Two identical conductors of copper and aluminium are placed in an identical electric fields. The magnitude of induced charge in the aluminium will be
An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
If the outer surface of the shell is earthed, then identify the correct statement(s)